662 research outputs found

    Current-controlled nanomagnetic writing for reconfigurable magnonic crystals

    Get PDF
    Strongly-interacting nanomagnetic arrays are crucial across an ever-growing suite of technologies. Spanning neuromorphic computing, control over superconducting vortices and reconfigurable magnonics, the utility and appeal of these arrays lies in their vast range of distinct, stable magnetization states. Different states exhibit different functional behaviours, making precise, reconfigurable state control an essential cornerstone of such systems. However, few existing methodologies may reverse an arbitrary array element, and even fewer may do so under electrical control, vital for device integration. We demonstrate selective, reconfigurable magnetic reversal of ferromagnetic nanoislands via current-driven motion of a transverse domain wall in an adjacent nanowire. The reversal technique operates under all-electrical control with no reliance on external magnetic fields, rendering it highly suitable for device integration across a host of magnonic, spintronic and neuromorphic logic architectures. Here, the reversal technique is leveraged to realize two fully solid-state reconfigurable magnonic crystals, offering magnonic gating, filtering, transistor-like switching and peak-shifting without reliance on global magnetic fields

    Current-controlled nanomagnetic writing for reconfigurable magnonic crystals

    Get PDF
    Strongly-interacting nanomagnetic arrays are crucial across an ever-growing suite of technologies. Spanning neuromorphic computing, control over superconducting vortices and reconfigurable magnonics, the utility and appeal of these arrays lies in their vast range of distinct, stable magnetisation states. Different states exhibit different functional behaviours, making precise, reconfigurable state control an essential cornerstone of such systems. However, few existing methodologies may reverse an arbitrary array element, and even fewer may do so under electrical control, vital for device integration. We demonstrate selective, reconfigurable magnetic reversal of ferromagnetic nanoislands via current-driven motion of a transverse domain wall in an adjacent nanowire. The reversal technique operates under all-electrical control with no reliance on external magnetic fields, rendering it highly suitable for device integration across a host of magnonic, spintronic and neuromorphic logic architectures. Here, the reversal technique is leveraged to realise two fully solid-state reconfigurable magnonic crystals, offering magnonic gating, filtering, transistor-like switching and peak-shifting without reliance on global magnetic fields

    HIF-Independent Regulation of Thioredoxin Reductase 1 Contributes to the High Levels of Reactive Oxygen Species Induced by Hypoxia

    Get PDF
    Cellular adaptation to hypoxic conditions mainly involves transcriptional changes in which hypoxia inducible factors (HIFs) play a critical role. Under hypoxic conditions, HIF protein is stabilized due to inhibition of the activity of prolyl hydroxylases (EGLNs). Because the reaction carried out by these enzymes uses oxygen as a co-substrate it is generally accepted that the hypoxic inhibition of EGLNs is due to the reduction in oxygen levels. However, several studies have reported that hypoxic generation of mitochondrial reactive oxygen species (ROS) is required for HIF stabilization. Here, we show that hypoxia downregulates thioredoxin reductase 1 (TR1) mRNA and protein levels. This hypoxic TR1 regulation is HIF independent, as HIF stabilization by EGLNs inhibitors does not affect TR1 expression and HIF deficiency does not block TR1 hypoxic-regulation, and it has an effect on TR1 function, as hypoxic conditions also reduce TR1 activity. We found that, when cultured under hypoxic conditions, TR1 deficient cells showed a larger accumulation of ROS compared to control cells, whereas TR1 over-expression was able to block the hypoxic generation of ROS. Furthermore, the changes in ROS levels observed in TR1 deficient or TR1 over-expressing cells did not affect HIF stabilization or function. These results indicate that hypoxic TR1 down-regulation is important in maintaining high levels of ROS under hypoxic conditions and that HIF stabilization and activity do not require hypoxic generation of ROS

    Long-lived pressure-driven coherent structures in KSTAR plasmas

    Get PDF
    Highly coherent structures associated with an extremely long-lived saturated magnetohydrodynamic instability have been observed in KSTAR tokamak under a long-pulse and steady-state operation. They persist essentially unchanged for the full duration of a discharge up to 40 s, much longer than any dynamical or dissipative time scales in the system. Analysis of the data, supported by numerical simulations, indicates that they may be associated with a pressure-driven mode causing some degradation in the toroidal rotation, electron, and ion energy confinement. Published by AIP Publishing.open1121Ysciescopu

    Counter-current chromatography for the separation of terpenoids: A comprehensive review with respect to the solvent systems employed

    Get PDF
    Copyright @ 2014 The Authors.This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Natural products extracts are commonly highly complex mixtures of active compounds and consequently their purification becomes a particularly challenging task. The development of a purification protocol to extract a single active component from the many hundreds that are often present in the mixture is something that can take months or even years to achieve, thus it is important for the natural product chemist to have, at their disposal, a broad range of diverse purification techniques. Counter-current chromatography (CCC) is one such separation technique utilising two immiscible phases, one as the stationary phase (retained in a spinning coil by centrifugal forces) and the second as the mobile phase. The method benefits from a number of advantages when compared with the more traditional liquid-solid separation methods, such as no irreversible adsorption, total recovery of the injected sample, minimal tailing of peaks, low risk of sample denaturation, the ability to accept particulates, and a low solvent consumption. The selection of an appropriate two-phase solvent system is critical to the running of CCC since this is both the mobile and the stationary phase of the system. However, this is also by far the most time consuming aspect of the technique and the one that most inhibits its general take-up. In recent years, numerous natural product purifications have been published using CCC from almost every country across the globe. Many of these papers are devoted to terpenoids-one of the most diverse groups. Naturally occurring terpenoids provide opportunities to discover new drugs but many of them are available at very low levels in nature and a huge number of them still remain unexplored. The collective knowledge on performing successful CCC separations of terpenoids has been gathered and reviewed by the authors, in order to create a comprehensive document that will be of great assistance in performing future purifications. © 2014 The Author(s)

    Mechanistic Insights on the Inhibition of C5 DNA Methyltransferases by Zebularine

    Get PDF
    In mammals DNA methylation occurs at position 5 of cytosine in a CpG context and regulates gene expression. It plays an important role in diseases and inhibitors of DNA methyltransferases (DNMTs)—the enzymes responsible for DNA methylation—are used in clinics for cancer therapy. The most potent inhibitors are 5-azacytidine and 5-azadeoxycytidine. Zebularine (1-(β-D-ribofuranosyl)-2(1H)- pyrimidinone) is another cytidine analog described as a potent inhibitor that acts by forming a covalent complex with DNMT when incorporated into DNA. Here we bring additional experiments to explain its mechanism of action. First, we observe an increase in the DNA binding when zebularine is incorporated into the DNA, compared to deoxycytidine and 5-fluorodeoxycytidine, together with a strong decrease in the dissociation rate. Second, we show by denaturing gel analysis that the intermediate covalent complex between the enzyme and the DNA is reversible, differing thus from 5-fluorodeoxycytidine. Third, no methylation reaction occurs when zebularine is present in the DNA. We confirm that zebularine exerts its demethylation activity by stabilizing the binding of DNMTs to DNA, hindering the methylation and decreasing the dissociation, thereby trapping the enzyme and preventing turnover even at other sites

    MMP28 (epilysin) as a novel promoter of invasion and metastasis in gastric cancer

    Get PDF
    Background\ud The purpose of this study was to investigate invasion and metastasis related genes in gastric cancer.\ud \ud Methods\ud The transwell migration assay was used to select a highly invasive sub-line from minimally invasive parent gastric cancer cells, and gene expression was compared using a microarray. MMP28 upregulation was confirmed using qRT-PCR. MMP28 immunohistochemistry was performed in normal and gastric cancer specimens. Invasiveness and tumor formation of stable cells overexpressing MMP28 were tested in vitro and in vivo.\ud \ud Results\ud MMP28 was overexpressed in the highly invasive sub-cell line. Immunohistochemistry revealed MMP28 expression was markedly increased in gastric carcinoma relative to normal epithelia, and was significantly associated with depth of tumor invasion, lymph node metastasis and poorer overall survival. Ectopic expression of MMP28 indicated MMP28 promoted tumor cell invasion in vitro and increased gastric carcinoma metastasis in vivo.\ud \ud Conclusions\ud This study indicates MMP28 is frequently overexpressed during progression of gastric carcinoma, and contributes to tumor cell invasion and metastasis. MMP28 may be a novel therapeutic target for prevention and treatment of metastases in gastric cancer

    Transcriptional Repressive H3K9 and H3K27 Methylations Contribute to DNMT1-Mediated DNA Methylation Recovery

    Get PDF
    DNA methylation and histone modifications are two major epigenetic events regulating gene expression and chromatin structure, and their alterations are linked to human carcinogenesis. DNA methylation plays an important role in tumor suppressor gene inactivation, and can be revised by DNA methylation inhibitors. The reversible nature of DNA methylation forms the basis of epigenetic cancer therapy. However, it has been reported that DNA re-methylation and gene re-silencing could occur after removal of demethylation treatment and this may significantly hamper the therapeutic value of DNA methylation inhibitors. In this study we have provided detailed evidence demonstrating that mammalian cells possess a bona fide DNA methylation recovery system. We have also shown that DNA methylation recovery was mediated by the major human DNA methyltransferase, DNMT1. In addition, we found that H3K9-tri-methylation and H3K27-tri-methylation were closely associated with this DNA methylation recovery. These persistent transcriptional repressive histone modifications may have a crucial role in regulating DNMT1-mediated DNA methylation recovery. Our findings may have important implications towards a better understanding of epigenetic regulation and future development of epigenetic therapeutic intervention

    Scenario-Based Design Theorizing:The Case of a Digital Idea Screening Cockpit

    Get PDF
    As ever more companies encourage employees to innovate, a surplus of ideas has become reality in many organizations – often exceeding the available resources to execute them. Building on insights from a literature review and a 3-year collaboration with a banking software provider, the paper suggests a Digital Idea Screening Cockpit (DISC) to address this challenge. Following a design science research approach, it suggests a prescriptive design theory that provides practitioner-oriented guidance for implementing a DISC. The study shows that, in order to facilitate the assessment, selection, and tracking of ideas for different stakeholders, such a system needs to play a dual role: It needs to structure decision criteria and at the same be flexible to allow for creative expression. Moreover, the paper makes a case for scenario-based design theorizing by developing design knowledge via scenarios
    corecore